Dipl.-Ing. Andreas Haacker

SANIERUNG VON DRUCKROHRLEITUNGEN

STAND DER DINGE, PERSPEKTIVEN, QUALITÄTSFRAGEN

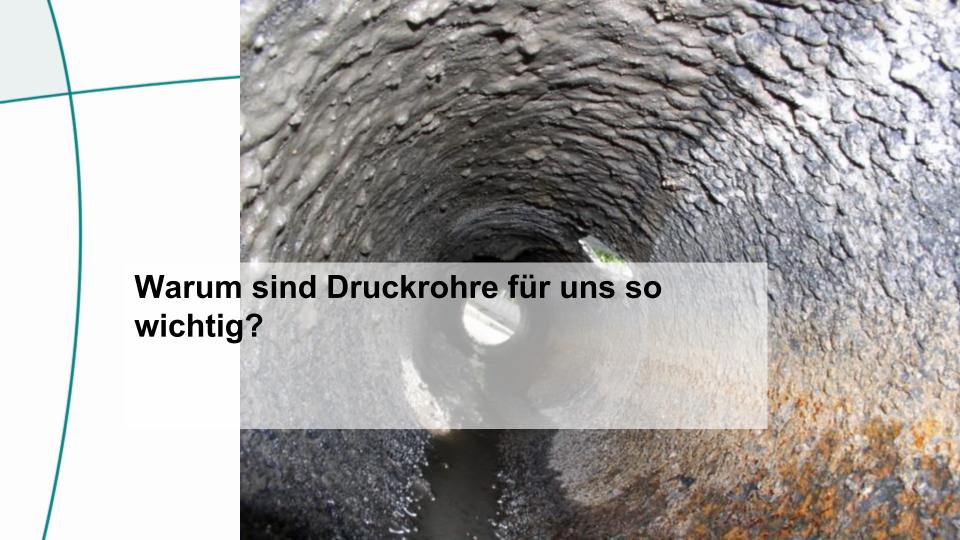
Inhalt

- Das RSV-Merkblatt 1.2 die wichtigsten Elemente
- Bauteilprüfung von Druckrohren
- Diskutieren Sie mit uns, teilen Sie uns Ihre Erfahrungen

Rohrbruch: Tempelhofer Damm gesperrt

Unter dem Tempelhofer Damm ist in der Nacht zum Freitag eine Abwasserleitung gebrochen und hat die Straße großflächig überflutet. Auch in den U-Bahnhof Paradestraße drang Wasser ein.

Stadteinwärts bleibt der Tempelhofer Damm das ganze Wochenende gesperrt. VON STEFAN JACOBS



Fäkalien-Fontäne: Zwei Abwasser-Druckleitungen in Halle-Neustadt geplatzt – Reparaturdauer noch unklar

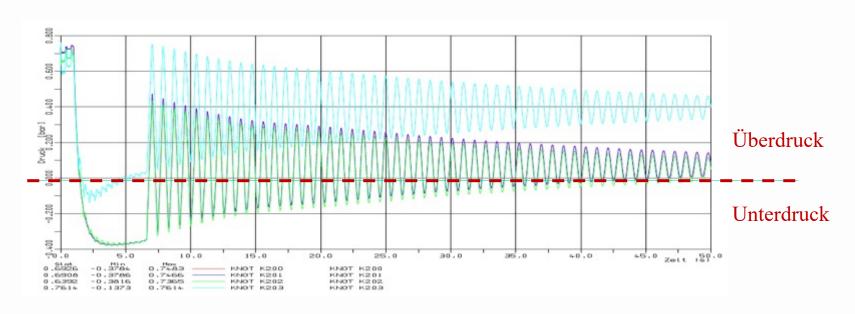
VON ESEPPELT - 8. FEBRUAR 2022

Typische Schäden

Zunehmende Schädigungen

Lochfraß

Längsrisse



Druckrohrleitungen - Besonderheiten

- Außerbetriebnahme für Reinigung und Inspektion nur in Ausnahmefällen
- Häufig lange Strecken ohne Revisionseinrichtungen
- Umfassende Zustandsdaten für Sanierungsplanung fehlen häufig
- Schaltvorgänge der Abwasserpumpen können Druckstoß in der Leitung auslösen…

Schaltvorgänge

Quelle: Hamburg Wasser

Zeit zur Sanierung?

- Schlauchlining ist in Freispiegelleitungen etabliert
- Bisher kein Regelwerk für Druckleitungen

Der Zukunft verpflichtet

Erhöhte Anforderungen

- Druckschlauchliner müssen Druckstoßwellen standhalten (Über- und Unterdruck)
- Druckschlauchliner müssen eine dauerhafte, sichere Einbindung in das vorhandene Netz ermöglichen und können nur als Druckschlauchlinersystem betrachtet werden
- Der Einbau eines Liners muss schnell erfolgen für umgehende Wiederinbetriebnahme (Wirtschaftlichkeit) und muss sicher sein (hohes Schadenpotential bei Druckrohren)

Was enthält das Merkblatt 1.2?

Renovierung von Abwasserdruckleitungen mit Druckschlauchlinern

Anforderungen, Qualitätssicherung und Planung

Rohrleitungssanierungsverband e.V. Shanghaisitee 9 20457 Hamburg Tel.: +49 40 21074167

(c) RSV e. V. Mai 2019 | Eine Verwendung des Merkblattes ist mit Quellenangabe gestattet.

Das Merkblatt 1.2 ...

- Schließt die Lücke eines fehlenden Regelwerks für Druckschlauchliner
- Legt die normative Basis dar
- Definiert Anforderungen für Material, Techniken und Verfahren
- Grundlagen f
 ür Planung, Ausf
 ührung und Pr
 üfung
- Erstmals Definition des Druckschlauchlinersystems:
 Druckschlauchliner sowie seine Anbindungen und Anschlüsse an das Druckleitungsnetz
- Anforderungen an die Qualitätssicherung auf Basis typischer Betriebsbedingungen im Druckrohrsystem

Planning

Reinigung

Angaben zu Altrohr, Bettung, Boden

Rahmenbedingungen

Welche Liner-Klasse ist die richtige?

Klassifizierung nach DIN EN ISO 11295	Lastfall nach DWA A 143-2	Einwirkungen von innen	Einwirkungen von außen
Vollständig statisch belastbar**	Lastfall II Altrohr trägt auf Dauer nicht mit	Innendruck (Kesselformel sowie Überbrückung von Muffenspalten und Löchern) Unterdruck	Wasseraußendruck Erd- und Verkehrslasten*
Klasse B, C Semi-statisch belastbar	Lastfall I Altrohr trägt mit	Innendruck (nur Überbrückung von Muffenspalten und Löchern) Unterdruck	Wasseraußendruck

Druckschlauchlinertypen

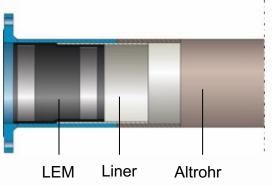
Glasliner Hohe Festigkeit

Technology Overview

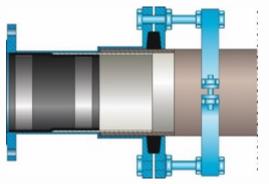
	Fabric Hose	Needle Felt Liner	Liner with Fabric Hose Layer	GRP Needle Felt Liner	Glass Liner
Klassifizierung EN ISO 11295 (designabhängig)	С	A, B	A, B, C	A, B, C	A, B
DN-Bereich [mm]*	DN80-DN1200	DN100-DN1600	DN100-DN1000	DN100-DN1600	DN150-DN1500
Komposit- dicke [mm]*	2 bis 5	4 bis 30	4 bis 25	5 bis 15	4 bis 15
Harztyp	EP	EP, UP	EP	EP, UP	UP, VE
Einbauverfahren	Inversion	Inversion, Kombination Einzu	Einzug		
Härtungs- verfahren	Warmhärtung (Wasser/Dampf) Umgebungs- temp.)	Warmhärtung (Wa	UV-Härtung Kombinations- härtung		
Bogengängigkeit (radienabhängig)					

Einzug, Härtungsprozess

Verbindung über das Altrohr

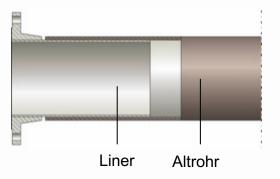

- Mehrbereichskupplung

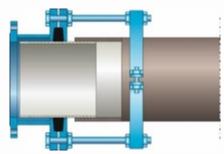
- Altrohrende als verbindendes Element
- Linerrückschnitt im Altrohr und Abdichtung mittels Linerendmanschette (LEM)
- Bei Klasse C auch ohne LEM


Verbindung über Fitting

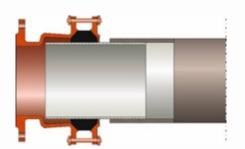
Neues Rohrelement mit Flansch oder Spitzende

- Neurohrfitting mit gleichem D_i vor Linereinbau angeordnet
- Linerrückschnitt und Abdichtung mittels LEM


Sonderflansch mit zugfester Kupplung



Verbindung über den Druckschlauchliner

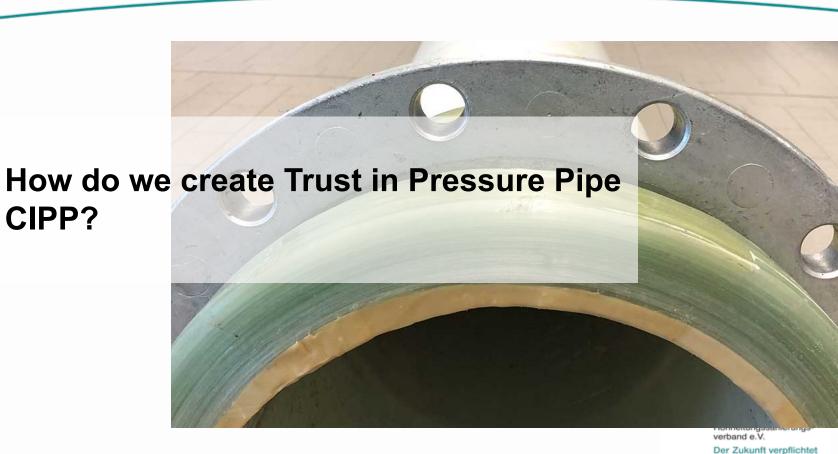

GFK-Flansch

Sonderflansch mit zugester Kupplung

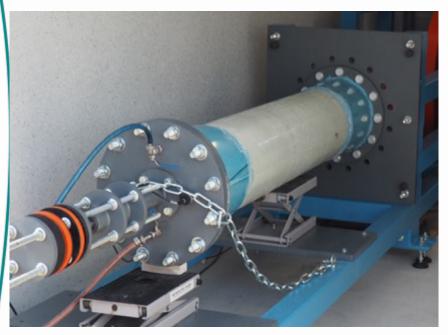
Mehrbereichskupplung

- Bei Klasse A direkte Anwendung von GFK-Flanschen oder mechanischen Kupplungen auf dem Liner
- Versiegelung der Schnittkante

Course of Renovation

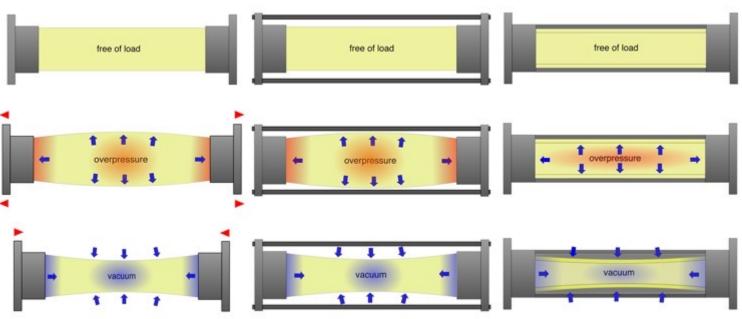

The leaflet provides guidelines for

- Planning of construction
- Course of construction
- Preparatory works
- Liner installation
- Final works

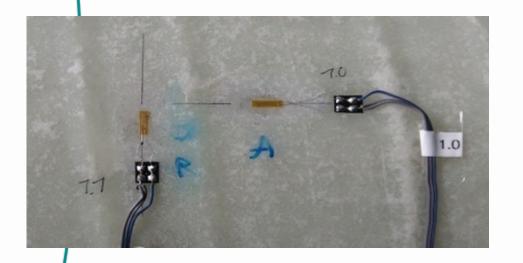


Qualitätsprüfung des Endproduktes

- Optische Inspektion
- Druckprüfung
 - Klasse A und B: gemäß EN 805 und DVGW-W 400-2
 - Klasse C: gemäß DVGW GW 327 (A)
- Qualitätsprüfung an vor Ort entnommenen Materialproben
 - Klasse A und B: Überprüfung der Materialkennwerte gemäß DWA-A 143-3 (Abschnitt 7.2)
 - Klasse C: Überprüfung der Verklebung (Schäl- versuch) gemäß DVGW GW 327



Eignungstest: Dynamischer Lastwechsel-Test


- Zerstörungsfrei
- -0,9 bar Unterdruck bis +10 bar Überdruck (Medium: Trinlkwasser)
- Frequenz: 2 Hertz
- Verfahren gemäß ISO 15306 und DIN 50100
- Eigene Norm DIN 3603
 im Laufe des Jahres
 2022

Testmöglichkeiten

Monitoring

Kurzvorstellung des neuen RSV-Merkblattes 1.2

Kostenloser Download hier:

Questions concerning the leaflet 1.2

- Dipl.-Ing. Delia Ewert
- Hamburg Wasser
- delia.ewert@hamburgwasser.de
- Dr.-Ing. Susanne Leddig-Bahls
- IQS Engineering AG
- s.leddig@iqs-engineering.com

Questions concerning tests

- Dipl.-Ing. Andreas Haacker
- Siebert + Knipschild GmbH
- a.haacker@siebert-testing.com
- **+**49 40 688714-0
- +49 173 2455016

